Effect of surfactant concentration on the responsiveness of a thermoresponsive copolymer/surfactant mixture with potential application on "Smart" foams formulations.

نویسندگان

  • M M Soledad Lencina
  • Eugenio Fernández Miconi
  • Marcos D Fernández Leyes
  • Claudia Domínguez
  • Ezequiel Cuenca
  • Hernán A Ritacco
چکیده

HYPOTHESIS Previous efforts to formulate smart foams composed of mixtures of PNIPAAm, a thermoresponsive uncharged polymer, and surfactants have failed because the surfactant displaces the PNIPAAm from the liquid-air interface, removing the thermal responsiveness. We hypothesized that thermoresponsive foams could be formulated with such a mixture if a charged surfactant were used in order to anchor an oppositely charged brush-type polyelectrolyte, for which PNIPAAm could be incorporated as side chains, to the interface. EXPERIMENTS A brush-type negatively charged co-polyelectrolyte (Cop-L) with PNIPAAm as side chains was synthetized. Its mixtures with DTAB, a cationic surfactant, in aqueous solution were characterized by dynamic light scattering, surface tension and surface compression viscoelasticity measurements, as a function of both surfactant concentration and temperature. The foam stability and its responsiveness to temperature changes were studied with a homemade apparatus. FINDINGS The Cop-L/DTAB mixtures were capable of producing thermoresponsive foams but only in a very narrow surfactant concentration (cs) range, 0.3 < cs< 1.6 mM. The responsiveness is due to a modification of the interfacial compression elasticity induced by conformational changes of the Polyeletrolyte/surfactant aggregates at the interface. This is possible only for cs < 1.6 because higher surfactant concentrations induce the polymer collapse at all temperatures, eliminating the thermal responsiveness.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimization of Ibuprofen Delivery through Rat Skin from Traditional and Novel Nanoemulsion Formulations

     The topical delivery of non-steroidal anti-inflammatory drugs (NSAIDS) such as Ibuprofen has been explored as a potential method of avoiding the first pass effects and the gastric irritation, which may occur when used orally. Ibuprofen is formulated into many topical preparations to reduce the adverse effects and simultaneously avoid the hepatic first-pass metabolism as well. However, it i...

متن کامل

Optimization of Ibuprofen Delivery through Rat Skin from Traditional and Novel Nanoemulsion Formulations

     The topical delivery of non-steroidal anti-inflammatory drugs (NSAIDS) such as Ibuprofen has been explored as a potential method of avoiding the first pass effects and the gastric irritation, which may occur when used orally. Ibuprofen is formulated into many topical preparations to reduce the adverse effects and simultaneously avoid the hepatic first-pass metabolism as well. However, it i...

متن کامل

Preparation and Characterization of Cyanocobalamin (Vit B12) Microemulsion Properties and Structure for Topical and Transdermal Application

  Objective(s): The objective of this study was to design a topical microemulsion of Vit B12 and to study the correlation between internal structure and physicochemical properties of the microemulsions. Microemulsions are thermodynamically stable mixtures of water, oil, surfactants and usually cosurfactants with several advantages for topical and transdermal drug delivery. The formul...

متن کامل

Effect of nonionic surfactant additives on the performance of nanofluid in the heat exchanger

A nanofluid is mixture of nano sized particles and a base fluid. This paper investigates by using laboratory based double pipe heat exchanger model, the performance of nanofluid containing about 48.46nm  particle size nanoparticles (ZnO) without or with addition of nonionic surfactant Rokanol K7 (500ppm) into the base fluid double distilled water to prepared three different concentrations 1.0%,...

متن کامل

Effect of nonionic surfactant additives on the performance of nanofluid in the heat exchanger

A nanofluid is mixture of nano sized particles and a base fluid. This paper investigates by using laboratory based double pipe heat exchanger model, the performance of nanofluid containing about 48.46nm  particle size nanoparticles (ZnO) without or with addition of nonionic surfactant Rokanol K7 (500ppm) into the base fluid double distilled water to prepared three different concentrations 1.0%,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of colloid and interface science

دوره 512  شماره 

صفحات  -

تاریخ انتشار 2018